Riesz and Wolff potentials and elliptic equations in variable exponent weak Lebesgue spaces ∗
نویسنده
چکیده
We prove optimal integrability results for solutions of the p(·)-Laplace equation in the scale of (weak) Lebesgue spaces. To obtain this, we show that variable exponent Riesz and Wolff potentials map L to variable exponent weak Lebesgue spaces.
منابع مشابه
Some functional inequalities in variable exponent spaces with a more generalization of uniform continuity condition
Some functional inequalities in variable exponent Lebesgue spaces are presented. The bi-weighted modular inequality with variable exponent $p(.)$ for the Hardy operator restricted to non- increasing function which is$$int_0^infty (frac{1}{x}int_0^x f(t)dt)^{p(x)}v(x)dxleqCint_0^infty f(x)^{p(x)}u(x)dx,$$ is studied. We show that the exponent $p(.)$ for which these modular ine...
متن کاملWolff Potential Estimates for Elliptic Equations with Nonstandard Growth and Applications
We study superharmonic functions related to elliptic equations with structural conditions involving a variable growth exponent. We establish pointwise estimates for such functions in terms of a Wolff type potential. We apply these estimates to prove a variable exponent version of the Hedberg–Wolff theorem on the dual of Sobolev spaces with zero boundary values.
متن کاملThe Stein–weiss Type Inequalities for the B–riesz Potentials
We establish two inequalities of Stein-Weiss type for the Riesz potential operator Iα,γ (B−Riesz potential operator) generated by the Laplace-Bessel differential operator ΔB in the weighted Lebesgue spaces Lp,|x|β ,γ . We obtain necessary and sufficient conditions on the parameters for the boundedness of Iα,γ from the spaces Lp,|x|β ,γ to Lq,|x|−λ ,γ , and from the spaces L1,|x|β ,γ to the weak...
متن کاملMultiple solutions for p(x)-Laplacian type equations
We prove the existence of at least three weak solutions for the Dirichlet problem when the nonlinear term f is sublinear and p(x) is greater than n. This Dirichlet problem involves a general elliptic operator in divergence form (in particular, a p(x)-Laplace operator). Our method relies upon a recent critical point theorem obtained by Bonanno and Marano, and is combined with the theory of varia...
متن کاملOn a p(x)-Kirchho equation via variational methods
This paper is concerned with the existence of two non-trivial weak solutions for a p(x)-Kirchho type problem by using the mountain pass theorem of Ambrosetti and Rabinowitz and Ekeland's variational principle and the theory of the variable exponent Sobolev spaces.
متن کامل